Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 22

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

The Development status of Generation IV reactor systems, 2; High temperature gas-cooled reactor (HTGR)

Kunitomi, Kazuhiko; Nishihara, Tetsuo; Yan, X.; Tachibana, Yukio; Shibata, Taiju

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 60(4), p.236 - 240, 2018/04

High temperature gas-cooled reactor (HTGR) is a graphite-moderated and helium-gas-cooled thermal-neutron reactor that has excellent safety features and can produce high temperature heat of 950$$^{circ}$$C. It is expected to use for various heat applications as well as for electricity generation to reduce carbon dioxide emission. Japan Atomic Energy Agency (JAEA) has been promoted research and development to demonstrate the HTGR safety features using High temperature engineering test reactor (HTTR) and it's heat application. JAEA are also conducting the action to international deployment of Japanese HTGR technologies in cooperation with industries-government-academia. This paper reports status of the research and development of HTGR and domestic and international collaborations.

Journal Articles

Conceptual design of the iodine-sulfur process flowsheet with more than 50% thermal efficiency for hydrogen production

Kasahara, Seiji; Imai, Yoshiyuki; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; Yan, X.

Nuclear Engineering and Design, 329, p.213 - 222, 2018/04

 Times Cited Count:21 Percentile:90.78(Nuclear Science & Technology)

A conceptual design of a practical large scale plant of the thermochemical water splitting iodine-sulfur (IS) process flowsheet was carried out as a heat application of JAEA's commercial high temperature gas cooled reactor GTHTR300C plant design. Innovative techniques proposed by JAEA were applied for improvement of hydrogen production thermal efficiency; depressurized flash concentration H$$_{2}$$SO$$_{4}$$ using waste heat from Bunsen reaction, prevention of H$$_{2}$$SO$$_{4}$$ vaporization from a distillation column by introduction of H$$_{2}$$SO$$_{4}$$ solution from a flash bottom, and I$$_{2}$$ condensation heat recovery in an HI distillation column. Hydrogen of about 31,900 Nm$$^{3}$$/h would be produced by 170 MW heat from the GTHTR300C. A thermal efficiency of 50.2% would be achievable with incorporation of the innovative techniques and high performance HI concentration and decomposition components and heat exchangers expected in future R&D.

Journal Articles

R&D status in thermochemical water-splitting hydrogen production iodine-sulfur process at JAEA

Noguchi, Hiroki; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kubo, Shinji

Energy Procedia, 131, p.113 - 118, 2017/12

 Times Cited Count:22 Percentile:99.79(Energy & Fuels)

The IS process is the most deeply investigated thermochemical water-splitting hydrogen production cycle. It is in a process engineering stage in JAEA to use industrial materials for components. Important engineering tasks are verification of integrity of the total process and stability of hydrogen production in harsh environment. A test facility using corrosion-resistant materials was constructed. The hydrogen production ability was 100 L/h. Operation tests of each section were conducted to confirm basic functions of reactors and separators, etc. Then, a trial operation for integration of the sections was successfully conducted to produce hydrogen of about 10 L/h for 8 hours.

Journal Articles

IS process hydrogen production test for components and system made of industrial structural material, 2; H$$_{2}$$SO$$_{4}$$ decomposition, HI distillation, and HI decomposition section

Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1029 - 1038, 2016/11

JAEA has been conducting R&D on the IS process for nuclear-powered hydrogen production. We have constructed a 100 NL/h-H$$_2$$-scale test apparatus made of industrial materials. At first, we investigated performance of components in this apparatus. In this paper, the test results of H$$_2$$SO$$_4$$ decomposition, HI distillation, and HI decomposition were shown. In the H$$_2$$SO$$_4$$ section, O$$_2$$ production rate is proportional to H$$_2$$SO$$_4$$ feed rate and SO$$_3$$ decomposition ratio was estimated about 80%. In HI distillation section, we confirmed to acquire a concentrated HI solution over azeotropic HI composition in the condenser. In HI decomposition section, H$$_2$$ could be produced stably by HI decomposer and decomposition ratio was about 18%. The H$$_2$$SO$$_4$$ decomposer, the HI distillation column, and the HI decomposer were workable. Based on the results added to that shown in Series I, we conducted a trial continuous operation and succeeded it for 8 hours.

Journal Articles

IS process hydrogen production test for components and system made of industrial structural material, 1; Bunsen and HI concentration section

Tanaka, Nobuyuki; Takegami, Hiroaki; Noguchi, Hiroki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kasahara, Seiji; Kubo, Shinji

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1022 - 1028, 2016/11

Japan Atomic Energy Agency (JAEA) has manufactured 100 NL/h-H$$_2$$-scale hydrogen test apparatus. In advance to conduct the continuous operation, we investigated performance of the components in each section of the IS process. In this paper, the results of test of Bunsen and HI concentration sections was shown. In Bunsen reaction, section, we confirmed that outlet gas flow rate included no SO$$_{2}$$ gas, indicating that all the feed SO$$_{2}$$ gas was absorbed to the solution in the Bunsen reactor for the Bunsen reaction. On the basis of these results, we evaluated that Bunsen reactor was workable. In HI concentration section, HI concentration was conducted by EED stack. As a result, it can concentrate HI in HIx solution as theoretically predicted on the basis of the previous paper. Based on the results added to that shown in Series II, we have conducted a trial continuous operation and succeeded it for 8 hours.

Journal Articles

Assessment of amount and concentration of tritium in HTTR-IS system based on tritium behavior during high-temperature continuous operation of HTTR

Dipu, A. L.; Ohashi, Hirofumi; Hamamoto, Shimpei; Sato, Hiroyuki; Nishihara, Tetsuo

Annals of Nuclear Energy, 88, p.126 - 134, 2016/02

 Times Cited Count:5 Percentile:43.12(Nuclear Science & Technology)

The tritium concentration in the high temperature engineering test reactor (HTTR) was measured during the high temperature continuous operation for 50 days. The tritium concentration in the primary helium gas increased after startup and reached a maximum value. It then decreased slightly over the course during the normal operation phase. Decrease of concentration of tritium in primary helium gas during the normal operation phase could be attributed to the effect of tritium chemisorption on graphite. The tritium concentration in the secondary helium gas showed a peak value during the power ramp up phase. Afterwards, it decreased gradually at the end of normal power operation. It was assessed that the concentration and total quantity of tritium in the secondary helium cooling system for the HTTR-Iodine Sulfur (IS) system can be maintained below the regulatory limits, which means the hydrogen production plant can be exempt from the safety function of the nuclear facility.

JAEA Reports

Sensitivity analysis on flammable gas dispersion and explosion in HTTR hydrogen production system with fire and explosion analysis code system -P2A- (Contract research)

Inaba, Yoshitomo; Nishihara, Tetsuo

JAERI-Tech 2005-033, 206 Pages, 2005/07

JAERI-Tech-2005-033.pdf:34.71MB

In this report, we investigated the effects of jet for the dispersion and explosion analysis of leaked gas, obstacles, position of an ignition point and cell size for the gas explosion analysis, and atmospheric stability for the dispersion analysis of the leaked gas, with PHOENICS, AutoReaGas, and AUTODYN. Then, we carried out two accident analyses about combustible fluid leakage based on the investigation results of these effects. As a result, it was shown that important buildings related to safety was hardly affected by the explosion of the leaked gas.

Journal Articles

The HTTR project as the world leader of HTGR research and development

Shiozawa, Shusaku; Komori, Yoshihiro; Ogawa, Masuro

Nihon Genshiryoku Gakkai-Shi, 47(5), p.342 - 349, 2005/05

For the purpose to extend high temperature nuclear heat application, JAERI constructed the HTTR, High Temperature Engineering Test Reactor, and has carried out research and development of high temperature gas cooled reactor system aiming at high efficiency power generation and hydrogen production. This paper explains the history, main results, present status of research and development of HTTR project, international cooperation of research and development of HTGR and future plan aiming at development of Japanese original future HTGR-Hydrogen production system. This paper includes results from the study, which is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan.

JAEA Reports

Verification of HTTR hydrogen production system analysis code using experimental data of mock-up model test facility with a full-scale reaction tube; Cooling system of the secondary helium gas using steam generator and radiator (Contract research)

Sato, Hiroyuki; Ohashi, Hirofumi; Inaba, Yoshitomo; Maeda, Yukimasa; Takeda, Tetsuaki; Nishihara, Tetsuo; Inagaki, Yoshiyuki

JAERI-Tech 2005-014, 89 Pages, 2005/03

JAERI-Tech-2005-014.pdf:7.25MB

In a hydrogen production system using HTTR, it is required to control a secondary helium gas temperature within an allowable value at an intermediate heat exchanger (IHX) inlet to prevent a reactor scram. To mitigate thermal disturbance of the secondary helium gas caused by the hydrogen production system, a cooling system of the secondary helium gas using a steam generator(SG) and a radiator will be installed at the downstream of the chemical reactor. In order to verify a numerical analysis code of the cooling system, numerical analysis has been conducted. The pressure controllability in SG is highly affected by the heat transfer characteristics of air which flows outside of the heat exchanger tube of the radiator. In order to verify a numerical analysis code of the cooling system, the heat transfer characteristics of air has been investigated with experimental results of a mock-up model test. It was confirmed that numerical analysis results were agreed well with experimental results, and the analysis code was successfully verified.

Journal Articles

Research and development of HTTR hydrogen production systems

Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi

Proceedings of 17th KAIF/KNS Annual Conference, p.557 - 567, 2002/04

The research and development program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000 m3/h by steam reforming of natural gas, using a nuclear heat of 10 MW supplied by the HTTR. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for an out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. Essential tests are also carried out to obtain detailed data for safety review and development of analytical codes. Other basic studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R&D of the HTTR hydrogen production systems in JAERI.

JAEA Reports

Thermal and chemical analysis of carbon dioxide reforming of methane using the out-of-pile test facility

Huang, Z.*; Ohashi, Hirofumi; Inagaki, Yoshiyuki

JAERI-Tech 2000-022, p.30 - 0, 2000/03

JAERI-Tech-2000-022.pdf:1.24MB

no abstracts in English

Journal Articles

Research and development program of hydrogen production system with high-temperature gas-cooled reactor

Miyamoto, Yoshiaki; Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Nishihara, Tetsuo; Shimizu, Saburo

Proceedings of International Hydrogen Energy Forum 2000, 2, p.271 - 278, 2000/00

no abstracts in English

Journal Articles

Out-of-pile demonstration test program of hydrogen production system coupling with HTTR

Inagaki, Yoshiyuki; Takeda, Tetsuaki; Nishihara, Tetsuo; Hada, Kazuhiko; Hayashi, Koji

Nihon Genshiryoku Gakkai-Shi, 41(3), p.250 - 257, 1999/00

 Times Cited Count:10 Percentile:60.61(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Development of methane conversion improvement method by recycling of residual Methane for steam reforming as a part of R&D of HTGR-hydrogen production system

Inagaki, Yoshiyuki; Haga, Katsuhiro; ; Sekita, Kenji; *; Hino, Ryutaro

Nihon Genshiryoku Gakkai-Shi, 40(1), p.59 - 64, 1998/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Study on methane separation from steam reforming product gas with polyimide membrane

*; Inagaki, Yoshiyuki; ; Sekita, Kenji; Haga, Katsuhiro; Hino, Ryutaro

JAERI-Research 97-076, 33 Pages, 1997/10

JAERI-Research-97-076.pdf:1.3MB

no abstracts in English

JAEA Reports

Multi-group helium and hydrogen production cross section libraries for fusion neutronics design

Mori, Seiji*; S.Zimin*; Takatsu, Hideyuki

JAERI-M 93-175, 72 Pages, 1993/09

JAERI-M-93-175.pdf:1.61MB

no abstracts in English

Journal Articles

Analysis on evolving environments of engineered barriers of high-level radioactive waste repositories during the first 1,000 years

*; *; *; *; *; *; ; Nagasaki, Shinya*

Nihon Genshiryoku Gakkai-Shi, 35(5), p.420 - 437, 1993/05

 Times Cited Count:6 Percentile:55.97(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

A Study on steam reforming process using nuclear heat of VHTR

*; ;

JAERI-M 90-082, 44 Pages, 1990/05

JAERI-M-90-082.pdf:1.16MB

no abstracts in English

Journal Articles

Chemical application of nuclear reactor heat

Nihon Genshiryoku Gakkai-Shi, 27(5), p.403 - 410, 1985/00

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

no abstracts in English

22 (Records 1-20 displayed on this page)